Geographic information system for hydrodynamic weather forecast accuracy increasing for Belarusian territory based on Earth remote sensing data and the objective analysis of meteorological fields
Abstract
The article presents a complex geoinformation system for the validity of hydrodynamic weather forecasts improving, including updated and promptly updated on the basis of the remote sensing data spatial distributions of the physical parameters of the underlying surface, the sets of the parameterizations of atmospheric processes at the grid scale and blocks of the data assimilation from ground-based meteorological, aerological and radar observations adapted for the territory of Belarus. It is shown that the data assimilation of meteorological and aerological stations allows reducing the
probability of absolute errors in surface pressure forecast ≥ 3 hPa by 5 %. The assimilation of radar data reduces the mean-square error of surface wind speed forecast by 0.33-0.74 m/s at an advance time within 24 h, and allows more accurate forecasting of the territorial distribution of convective systems and precipitation areas at early hours of the forecast (up to 12 h). The clarification of the land use structure and underlying surface parameters on the base of operational satellite data provides an increase in the validity of the short-term hydrodynamic forecast of surface air temperature in Belarus by 4-9 % with maximum manifestation in Minsk, Gomel and Grodno regions in the cold period of a year.
About the Authors
S. A. LysenkoBelarus
Sergey A. Lysenko, D. Sc. (Physical and Mathematical), Professor, Director
220076; 10, F. Skoriny Str.; Minsk
P. O. Zaiko
Belarus
Polina O. Zaiko, Researcher
220076; 10, F. Skoriny Str.; Minsk
References
1. Gandin L. S. Obectivnyi analiz meteorologicheskich polei [Objective analysis of meteorological fields]. Leningrad, Gidromeotizdat, 1963, 287 p. (in Russian)
2. Mazzarella V., Ferretti R., Picciotti E., Marzano F. S. Investigating 3D and 4D variational rapid-update-cycling assimilation of weather radar reflectivity for a heavy rain event in central Italy. Natural Hazards a. Earth System Sciences, 2021, vol. 21, iss. 9. Available at: https://nhess.copernicus.org/articles/21/2849/2021/ (access January 20, 2022).
3. Xu J., Xiao Z., Lin Z., Li M. System bias correction of short-term hub-height wind forecasts using the Kalman filter. Protection a. Control of Mod. Power Systems, 2021, vol. 6, iss. 1, art. № 37.
4. Lapo P. O. (Zaiko P. O.), Shakur V. N., Proharenai M. P. Resultaty verificacii modeli WRF–ARW v Hydromet Respubliki Belarus [Verification of WRF–ARW model in Hydromet of the Republic of Belarus]. Trudy Gidrometeorologicheskogo nauchno-issledovatelskogo centra Rossijskoj Federacii [Proc. of the Hydrometeorological Research Center of the Russian Federation]. Federalnaya sluzhba po gidrometeorologii i monitoringu okruzhayushej sredy, Gidrometeorologicheskij nauchno-issledovatelskij centr Rossijskoj Federacii [Federal Service for Hydrometeorology and Environmental Monitoring, Hydrometeorological Research Center of the Russian Federation]. 2015, iss. 358, pp. 67–77. (in Russian)
5. Cressman G. P. An operational objective analysis system. Month. Weather Rev., 1959, Vol. 87, iss. 10. Available at: https://journals.ametsoc.org/downloadpdf/journals/mwre/87/10/1520-0493_1959_087_0367_aooas_2_0_co_2.pdf (accessed June 1, 2020).
6. Zaiko P. O. Sistema ucvoenia nazemnich i aerologicheskich nabludenii v mezomostabnuy cheslennyu model WRF–ARW v Belgidromete [System for assimilation of ground-based and aerological observations into the mesoscale numerical model WRF–ARW at Belhydromet]. Prirodnye resursy = Natural Resources, 2019, no. 1, pp. 88–95. (in Russian)
7. Crisologo I. Polarimetric rainfall retrieval from a C-Band weather radar in a tropical environment (The Philippines) // Asia-Pacific J. of the Atmospheric Sciences, 2014, vol. 50, iss. 1, pp. 595–607.
8. Bringi V. N., Chandrasekar V. Polarimetric doppler weather radar: principles and applications. Cambridge: Cambridge Univ. Press, 2001, XXV, 636 p.
9. Cirulnikov M. D., Svirenko P. I., Gorin V. E. [et al.] Novai technologia obiektivnogo analiza na osnove shemy 3D-VAR [New objective analysis technology based on 3D-VAR scheme]. Obninsk, 2012, no. 39, pp. 7–14. (in Russian)
10. Wang H., Huang X.-Y., Sun J. [et al.] Inhomogeneous background error modeling for WRF-var using the NMC method. J. of Appl. Meteorology a. Climatology, 2014, vol. 53, iss. 10, pp. 2287–2309.
11. Ohrana okrugauschei sredy. Hydrometeorologia. Pravila sostavlenia [Environmental protection and natural resource management. Hydrometeorology. Rules for compiling short-term weather forecasts for general purposes: TKP 17.10-06-2008 (02120): approved. M-vom nature. resources and environmental protection. environment Rep. Belarus 10/31/08: introduced. 01/01/09]. Minsk, 2008, no. IV, 30 p. (in Russian)
12. Davis C. A., Brown B. G., Bullock R., Halley-Gotway J. The method for object-based diagnostic evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC spring program. Weather a. Forecasting, 2009, vol. 24, iss. 5, pp. 1252–1267.
13. Lysenko S. A., Zaiko P. O. Ocenki vliyaniya podstilayushchej poverhnosti na tochnost' chislennogo prognoza temperatury vozduha na territorii Belarusi s ispol'zovaniem modeli WRF [Estimation of the study of the underlying surface on the accuracy of the calculated forecast of air temperature on the territory of Belarus using the WRF model]. Gidrometeorologicheskie issledovaniya i prognozy = Hydrometeorological research and forecasts, 2021, no. 4 (382), pp. 50–68. (in Russian)
14. Liang S., Zhao X., Liu S. [et al.] A long-term global land surface satellite (GLASS) data-set for environmental studies. Intern. J. of Digital Earth., 2013, Vol. 6, iss. suppl. 1, pp. 5–33.
15. Lysenko S. A., Zaiko P. O. Povischenie tochnosti chislennich prognozov pogody na territorii Belarusi s ispolzovaniem operativnich sputnikovich dannich [Improving the accuracy of numerical weather forecasts in Belarus using operational satellite data]. Prirodopolzovanie = Nature Management, 2022, no. 2, pp. 86–98. (in Russian)
16. Buchhorn M., Bertels L., Smets B. [et al.]. Copernicus Global Land Operations "Vegetation and Energy": Moderate Dynamic Land Cover 100 m, version 3: algorithm theoretical basis document [S. l. : s. n.], 2020. Available at: https://zenodo.org/record/4723924#.Y4YJTXbP2Uk (accessed April 3, 2021).
17. Milbrandt J. A., Yau M. K. A multimoment bulk microphysics parameterization. Part II : A proposed three-moment closure and scheme description. J. of the Atmospheric Sciences, 2005, vol. 62, iss. 9, pp. 3065–3081.
18. Kain J. S., Fritsch J. M. Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The representation of cumulus convection in numerical models. Ed. by K. A. Emanuel, D. J. Raymond. Boston, 1993, chap. 16, pp. 165–170.
19. Grell G. A., Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Research Letters, 2002, vol. 29, iss. 14, art. no. 1693.
20. Bagrov A. N., Bykov F. L., Gordin V. A. Schema operativnogo kratkosrochnogo kompleksnogo prognoza prizemnoi temperature vozdyha I vlagnosti [Scheme of operational short-term comprehensive forecast of surface air temperature and humidity]. Meteorologiya i gidrologiya = Meteorology and Hydrology, Moscow, 2018, no. 8, pp. 5–18. (in Russian)
21. Zaiko P. O., Krasouski A. N., Barodka S. K. Sovershenstvovnie mesomaschtabnogo chislennogo prognozirovania pogody WRF-ARW v Respublike Belarus putem assimilacii radiolokacionnich dannich o vetre I otrazaemosty [Improvement of mesoscale numerical weather prediction WRF-ARW in the Republic of Belarus by assimilation of radar wind and reflectivity data]. Zhurnal Belorusskogo gosudarstvennogo universiteta. Geografiya. Geologiya = Journal of the Belarusian State University. Geography and Geology, 2020, no. 2, pp. 3–13. (in Russian).
Review
For citations:
Lysenko S.A., Zaiko P.O. Geographic information system for hydrodynamic weather forecast accuracy increasing for Belarusian territory based on Earth remote sensing data and the objective analysis of meteorological fields. Nature Management. 2024;(1):30-40. (In Russ.)
JATS XML