Greenhouse gas emission from the Vygonoshchanskoe peat deposit at the site with a predominance of dioecious nettle
Abstract
The annual balances of carbon dioxide, methane, and nitrous oxide at the Vygonoshchanskoye peat deposit were studied using chamber-static and chamber-dynamic methods under the predominance of ruderal synanthropic plant associations, mainly dioecious nettle (Urtica dioica). The total net ecosystem exchange at the studied monitoring site amounted to 951.89 g C m–2 yr–1, methane absorption amounted to –0.16 g C m–2 yr–1, and nitrous oxide emissions were 0.55 g N m–2 yr–1. Thus, in terms of CO2-equivalent and taking into account the molar mass, the total annual greenhouse gas balance was 40.17 tons of CO2-eq. ha–1 yr–1. A comparative characterization of the results obtained with similar measurements at monitoring sites with a predominance of meadow grasses, canary (Phalaris arudinacea) and sitnik (Juncus effuses) showed a significant dependence of greenhouse gas fluxes on the groundwater level, the thickness and composition of peat deposits, seasonality and temperature factors, as well as on the species composition of the growing vegetation.
Keywords
About the Author
T. D. YarmoshukBelarus
Tatsiana D. Yarmoshuk – Researcher
10, F. Skoriny Str., 220076 Minsk
References
1. Yarmoshuk T. D., Rakovich V. A., Minke M., Tile A., Hofman M. Emissii dioksida ugleroda s narushennih i vosstanavlivaemih bolotnih ekosistem [Carbon dioxide emissions from disturbed and regenerated swamp ecosystems]. Prirodopolzovanie = Nature Management, 2014, no. 25, pp. 70–81. (in Russian)
2. Drösler M. Trace gas exchange and climatic relevance of bog ecosystems, southern Germany. PhD thesis. München, Technischen Universität München Publ., 2005, 182 p.
3. Yarmoshuk T. D., Rakovich V. A., Minke M., Tile A. Opredelenie emissii metana na torfyanom mestorojdenii nizinnogo tipa «Vigonoschanskoe» s razlichnim urovnem zaleganiya gruntovih vod [Determination of methane emissions at the fen peat deposit "Vygonoshchanskoe" with different levels of groundwater occurrence]. Prirodopolzovanie = Nature Management, 2013, no. 24, pp. 43–50. (in Russian)
4. Yarmoshuk T. D., Rakovich V. A., Minke M., Tile A. Emissii zakisi azota na narushennih torfyanih mestorojdeniyah nizinnogo tipa [Nitrous oxide emissions from disturbed fen peat deposits]. Melioraciya = Land Reclamation, 2014, no. 2 (72), pp. 122–137. (in Russian)
5. Peet R. K., Wentworth T. R., White P. S. A flexible, multipurpose method for recording vegetation composition and structure. Castanea, 1998, no. 63, рp. 262–274.
6. Couwenberg J., Augustin J., Michaelis D., Joosten H. Towards a field guide for the assessment of greenhouse gas emissions from Central European peatlands. Emission reductions from rewetting of peatlands. Greifswald University, 2008, 27 p.
7. Couwenberg J., Thiele A., Tanneberger F., e. a. Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia, 2011, no. 674, рp. 67–89. doi:10.1007/s10750-011-0729-x
8. Jurasinski G., Koebsch F., Guenther A., Beetz S. Flux 0.3-0. Flux rate calculation from dynamic closed chamber measurements. R package version 0.3-0. Package ‘flux’, 25 April 2014, 60 p. Available at https://www.researchgate.net/publication/262248077_flux_03-0_Flux_rate_calculation_from_dynamic_closed_chamber_measurements (accessed 20 June 2023)
9. Lloyd J., Taylor J. A. On the temperature dependence of soil respiration. Funct. Ecol., 1994, vol. 8, рp. 315–323.
10. Michaelis L., Menten M. L. Die Kinetik der Invertinwirkung. Biochemische Zeitschrift, 1913, no. 49, рр. 315–323.
11. Tanneberger F., Wichtman W. Carbon credits from peatland rewetting. Schweizerbart Science Publishers, Stuttgart, 2011, 224 p.
12. Hendriks D. M. D. Integrated observations of greenhouse gas budgets at the ecosystem level. Amsterdam, Vrije Universitet Publ., 2009, 203 p.
13. Orlov D. S., Sadovnikova L. K., Suhanova N. I. Himiya pochv [Soil Chemistry]. Moscow, 2005, 558 p. (in Russian)
14. Stepanov A. L. Mikrobnaya transformaciya parnikovih gazov v pochvah [Microbial transformation of greenhouse gases in soils]. Moscow, GEOS Publ., 2011, 192 p. (in Russian)
15. Shein E. V., Pozdnyakova A. D., Shvarov A. P., Ilin L. I., Sorokina N. V. Gidrofizicheskie svoistva visokozolnih nizinnih torfyanih pochv [Hydrophysical properties of high-ash fen peat soils]. Pochvovedenie = Soil Science, 2018, no. 10, pp. 1259–1264. (in Russian)
16. IPCC, 2013. Climate change: The Physical science basis. contribution of working group to the Fifth assessment report of the intergovernmental panel on climate change. Eds. T. F. Stocker et al. New York, Cambridge University Press Publ., 2013, 1535 p.
17. Hiraishi T., et al. (eds). IPCC 2014, 2013 – Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. IPCC, Switzerland, 2014, 354 р.
18. Minke M., Freibauer A., Yarmoshuk T., Burlo A. Flooding of an abandoned fen by beaver led to highly variable greenhouse gas emissions. Mires and Peat, 2020, vol. 26, article 23, рр. 1–24. doi:10.19189/MaP.2019.SNPG.StA.1808
19. Wilson D., Blain D., Couwenberg J., Evans C. D., Murdiyarso D., Page S. E., Renou-Wilson F., Rieley J. O., Sirin A., Strack M. and Tuittila E.-S. Greenhouse gas emission factors associated with rewetting of organic soils. Mires and Peat, 2016, vol. 17, article 04, рр. 1–28. doi:10.19189/MaP.2016.OMB.222
20. Kudeyarov V. N., et al. Puli i potoki ugleroda v nazemnih ekosistemah Rossii [Carbon pools and fluxes in terrestrial ecosystems of Russia]. Institut fiz.-him. i biol. problem pochvovedeniya RAN = Institute of Physico-Chemical and Biological Problems of Soil Science RAS. Moscow, Nauka Publ., 2007, 315 p. (in Russian)
21. Makarov B. N. Gazovii rejim pochvi [Gas regime of the soil]. Moscow, Agropromizdat Publ., 1988, 103 p. (in Russian)
22. Vallen K. H., Bas Ch., Berkstrem A., Kolmaier G. Uglekislii gaz v atmosfere [Carbon dioxide in the atmosphere]. Ed. V. Baha, A. Kreina, A. Berje, A. Longetto. Moscow, Mir Publ.,1987, 534 p. (in Russian)
23. Kudeyarov V. N. Azotnii cikl i producirovanie zakisi azota [Nitrogen cycle and production of nitrous oxide]. Pochvovedenie = Soil Science, 1999, no. 8, рp. 988–998. (in Russian)
24. Zimenko T. G. Deyatelnost mikroorganizmov i mineralizacii organicheskogo veschestva v torfyanih pochvah s raznim urovnem gruntovih vod [Activity of microorganisms and mineralization of organic matter in peat soils with different groundwater levels]. Izvestiya AN SSSR, Seriya biol. = Izvestia of the USSR Academy of Sciences, Biological series, 1972, no. 6, рp. 846–854. (in Russian)
25. Zimenko T. G., Samsonova A. S., Misnik A. G., Gavrilkina N. V., Filipshanova L. I. Mikrobnie cenozi torfyanih pochv i ih funkcionirovanie [Microbial cenoses of peat soils and their functioning]. Minsk, 1983, 181 p. (in Russian)
26. Stepanov A. L., Manucharova N. A., Polyanskaya L. M. Producirovanie zakisi azota bakteriyami v pochvennih agregatah [Production of nitrous oxide by bacteria in soil aggregates]. Pochvovedenie = Soil Science, 1997, no. 8, рp. 973–976. (in Russian)
27. Davidson E. A. Soil responses to climate change. NATO ASI ser., 1994, vol. I, no. 23, pp. 155–168.
28. Frank S., Tiemeyer B., Gelbreacht J., Freibauer A. High soil solution carbon and nitrogen concentrations in a drained Atlantic bog are reduced to natural levels by 10 years of rewetting. Biogeochiences, 2014, vol. 11, pp. 2309–2324. doi:10.5194/bg-11-2309-2014
29. Reddy R., DeLaune R. D. Biogeochemistry of Wetlands: science and applications. CRC Press, Taylor&Francis Group, 2008, 805 p.
30. Klemedtsson L., Arnold K. V., Weslien P., Gundersen P. Soil CN ratio as a scalar parameter to predict nitrous oxide emissions. Global Change Biology, 2005, vol. 11, iss. 7, pp. 1142–1147.
31. Ryabchikov A. M. Krugovorot veschestva v prirode i ego izmenenie hozyaistvennoi deyatelnostyu cheloveka [The circulation of matter in nature and its change by human economic activity]. Moscow, Moscow University Publ.,1980, 272 p. (in Russian)
32. Lebed-Sharlevich Ya. I. Ocenka i prognoz gazogeohimicheskogo sostoyaniya i ekologicheskih funkcii pochv na tehnogennih gruntah (na primere g. Moskvi). Dis. … kand. biol. nauk [Assessment and forecast of the gas-geochemical state and ecological functions of soils on technogenic soils (on the example of Moscow). Dr. biol. sci. diss.]. Moscow, 2017, 208 p. (in Russian)
33. Liao T., Camp C. D., Yung Y. L. The seasonal cycle of N2O. Geophysical Research Letters, 2004, vol. 31, L17108.
34. Olchev A. V., Kurbatova Yu. A., Varlagin A. V., Vigodskaya N. N. Ocenka vertikalnoi advekcii pri izmerenii potokov CO2 nad lesom s pomoschyu metoda vihrevoi kovariacii [Estimation of vertical advection when measuring CO2 fluxes over a forest using the vortex covariance method]. Emissiya i stok parnikovih gazov na territorii severnoi Evrazii. Tez. dokl. Tret’ei Mejdunar. konf. [Proc. of Third Int. Conf. ‘Greenhouse Gas Emissions and Runoff in Northern Eurasia’]. Puschino, 2007, рp. 56–57. (in Russian)
35. Biraud S. C., Torn M. S., Smith J. R., Sweeney C., Riley W. J., Tans P. P. A multi-year record of airborne CO2 observations in the US Southern Great Plains. Atmospheric Measurement Techniques, 2013, 6, pp. 751–763.
36. Chapuis-Lardy L., Wrage N., Metay A., Chotte J.-L., Bernoux M. Soils, a sink for N2O? A review. Global Change Biology, 2007, vol. 13, no. 1, pp. 1–17.
37. Semenov M. V., Kravchenko I. K., Semenov V. M., Kuznecova T. V., Dulov L. E., Udalcov S. N., Stepanov A. L. Potoki dioksida ugleroda,metana i zakisi azota v pochvah kateni pravoberejya r. Oka (Moskovskaya oblast) [Fluxes of carbon dioxide, methane and nitrous oxide in the soils of the catena of the right bank of the river. Oka (Moscow region)]. Pochvovedenie = Soil Science, 2010, no. 5, рp. 582–590. (in Russian)
Review
For citations:
Yarmoshuk T.D. Greenhouse gas emission from the Vygonoshchanskoe peat deposit at the site with a predominance of dioecious nettle. Nature Management. 2023;(2):39-54. (In Russ.)
JATS XML