Preview

Nature Management

Advanced search

Improving the accuracy of numerical weather forecasts in Belarus using operational satellite data

Abstract

Two approaches are proposed for updating the geophysical characteristics of the surface (land use, albedo, leaf index, fraction of absorbed photosynthetically active radiation) in the Weather Research and Forecasting (WRF) numerical model for the territory of Belarus: updating the monthly averages based on modern Earth remote sensing databases GLASS (Global Land Surface Satellite), GLC2019 (Global Land Cover, 2019); daily update based on operational MODIS satellite composite products. To estimate the impact of the initial geophysical data on the quality of numerical prediction of surface temperature, a number of numerical experiments were carried out to predict various synoptic situations in the summer period. To assess the influence of on the quality of the numerical prediction of the surface temperature, a number of numerical experiments were performed to predict various synoptic situations in the summer period. A correction factor for the land surface albedo in the WRF model was calculated, which makes it possible to reduce the root-mean-square error of temperature forecast for the lead time of +12, +24, +36 and +48 h by 0.30 ºС, 0.10 ºС, 0.15 ºС and 0.16 ºC respectively. In numerical experiments the initialization of the WRF model using operational satellite products had the most positive effect on the surface temperature forecast for nighttime periods: for the lead time of +24 and +48 h the standard error decreased by 0.11 ºС and 0.14 ºС respectively.

About the Authors

S. A. Lysenko
Institute of Nature Management of the National Academy of Sciences of Belarus
Belarus

Sergey A. Lysenko – D. Sc. (Physical and Mathematical), Professor, Director

10, F. Skoriny Str., 220076, Minsk



P. O. Zaiko
Institute of Nature Management of the National Academy of Sciences of Belarus
Belarus

Polina O. Zaiko – Researcher

10, F. Skoriny Str., 220076, Minsk



References

1. Skamarok V. K. [et al.]. Description of the Advanced Research WRF model version 4. NCAR Techn. Boulder: National Center for Atmospheric Research, 2021, р. 165.

2. Lysenko S. A., Zaiko P. O. Ocenki vliyaniya podstilayushchej poverhnosti na tochnost' chislennogo prognoza temperatury vozduha na territorii Belarusi s ispol'zovaniem modeli WRF [Estimation of the study of the underlying surface on the accuracy of the calculated forecast of air temperature on the territory of Belarus using the WRF model]. Hydrometeorological research and forecasts, 2021, no. 4 (382), pp. 50–68. (in Russian)

3. Loginov V. F., Lysenko S. A., Melnik V. I. Izmenenie klimata Belarusi: prichiny, posledstviya, vozmozhnosti regulirovaniya [Climate Change in Belarus: Causes, Consequences, Regulatory Opportunities]. 2nd ed. Minsk, Encyclopedics Publ., 2020, pp. 264. (in Russian)

4. Olchev A. V., Rozinkina I. A., Kuzmina E. V., Nikitin M. A., Rivin G. S. Ocenka vliyaniya izmeneniya lesistosti central'nogo regiona Vostochno-Evropejskoj ravniny na letnie po-godnye usloviya [Assessment of statistical changes in the forest cover of the central region of the East European zone of observation of summer weather conditions]. Fundamental and applied climatology, 2017, vol. 4, pp. 79–101. (in Russian)

5. Li H., Zhang H., Mamtimin A., Fan S., Ju. S. A new land use dataset for the weather research and forecasting model (WRF). Atmosfera, 2020, vol. 11 (4), p. 350.

6. Buchhorn M., Smets B., Bertels L., De Roo B., Lesiv M., Zendbazar N.-E., Herold M., Fritz S. Copernicus Global Land Survey: Land cover 100 m: collection 3: Epoch 2019: Globe 2020. doi:10.5281/zenodo.3939050

7. Li X., Mitra C., Dong L., Yang Q. Understanding the impact of land use change on microclimate using a weather research and forecasting (WRF) model, Fizika i Khimiya Zemlya. 2017. doi:10.1016/j.pce.2017.01.017

8. Global Forecast System (GFS). [Rules for citing sources]. Available at: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs (accessed 01.06.2022)

9. Schaaf C., Wang Z. MCD43A3: MODIS/Terra and Aqua BRDF/Albedo Daily L3 Global 500 m V006 [Data Set]; NASA EOSDIS Land Processes DAAC, USGS/Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2015.

10. Knyazikhin Yu. MODIS leaf area index (LAI) and the proportion of photosynthetically active radiation absorbed by vegetation (FPAR) product (MOD 15) algorithm of the theoretical basis of the document. 1999, 130 p.

11. AρρEEARS API Documentation. [Rules for citing sources]. Available at: https://lpdaacsvc.cr.usgs.gov/appeears/api/ (accessed 01.06.2022)

12. Documentation Numba. [Rules for citing sources]. Available at: https://numba.readthedocs.io/en/stable/index.html (accessed 01.06.2022)

13. Dask User Guide. [Rules for citing sources]. Available at: https://docs.dask.org/en/latest/ (accessed 01.06.2022)

14. Isaev A. A. [Statistika v meteorologii i klimatologii] Statistics in meteorology and climatology. Moscow, Moscow State University Pub., 1988, 248 p. (in Russian).


Review

For citations:


Lysenko S.A., Zaiko P.O. Improving the accuracy of numerical weather forecasts in Belarus using operational satellite data. Nature Management. 2022;(2):86-98. (In Russ.)

Views: 45

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-3928 (Print)