Preview

Nature Management

Advanced search

Quantile analysis of average monthly temperature and precipitation on the territory of Belarus

Abstract

Analysis of average monthly air temperature and monthly precipitation sums has been performed using quantile regression method. Percentiles corresponding with selected extremes, i. e. below 0.1 and above 0.9, were taken into consideration. Distribution and temporal variability of temperature quantiles were determined for winter and summer seasons. Statistically significant relation between air temperature and characteristics of underlying surface is observed mainly for quantile 0.9 above. Spatial distribution of quantiles of monthly precipitation sums is more complex and is close to seasonal average only for 0.9 quantile. At the same time, their temporal variability corresponds well with features of modern warming. Statistically significant relation between monthly precipitation sums and elevation above sea level was found.

About the Authors

V. F. Loginov
Institute of Nature Management of the National academy of Sciences of Belarus
Belarus

Vladimir F. Loginov – Academician, D. Sc. (Geography), Chief Researcher

10, F. Skoriny Str., 220076, Minsk



M. A. Khitrykau
Institute of Nature Management of the National academy of Sciences of Belarus
Belarus

Maksim A. Khitrykau – Ph. D. (Geography), Researcher

10, F. Skoriny Str., 220076, Minsk



References

1. Koenker R., Bassett G. Regression quantiles. Econometrica, 1978, vol. 40, iss. 1. pp. 33–50.

2. M. A. Haugen [et al.]. Future climate emulations using quantile regression on large ensembles. Advances in Statistical Climatology. Meteorology and Oceanology, 2019, iss. 5. pp. 37–55.

3. Abbas S. A., Xuan Y., Song X. Quantile regression based on methods for investigating rainfall trends associated with flooding and drought conditions. Water Resources Management, 2019, vol. 33. pp. 4249–4264.

4. Haupt H., Fritsch M. Quantile trend regression and its application to central England temperature [Electronic resource]. Mathematics, vol. 10, iss. 3. Available at: https://doi.org/10.3390/math10030413 (accessed 18 January 2022).

5. Duan Q. Spatio-temporal quantile regression analysis revealing more nuanced patterns of climate change: a study of long-term daily temperature in Australia [Electronic resource]. PLoS ONE, 2022, vol. 17, iss. 8. Available at: https://doi.org/10.1371/journal.pone.0271457 (accessed 10 January 2022).

6. Marasinghe D. Quantile regression for climate data: master’s thesis. Clemson University, Clemson, 2014, 63 p.

7. Sterin A. M., Lavrov A. S. Trendy temperatury v svobodnoy atmosphere: raschoty s ispol’zovaniem metoda kvantil’noy regressii [Temperature trends in upper atmosphere: calculations with quantile regression method]. Fundamental’naya i prikladnaya klimatologiya = Fundamental and applied climatology, 2021, vol. 2, no. 2. pp. 99–114. (in Russian)

8. Koenker R. Quantile Regression. Urbana-Campaign, 2005, University of Illinois, 350 p.

9. Python.org [Electronic resource]. Available at: https://www.python.org/ (accessed 10 January 2022).

10. Stasmodels 0.13.5: statistical models, hypothesis tests and data exploration [Electronic resource]. Available at: https://www.statsmodels.org/stable/index.html/ (accessed 18 January 2022)

11. Loginov V. F. Global’nye i regional’nye izmeneniya klimata: prichiny i sledsviya [Global and regional changes of climate: reasons and consequences]. Minsk, TetraSystems Publ., 2008, 496 p. (in Russian)

12. Loginov V. F., Brovka Y. A. Sezonnye osobennosti izmeneniya klimata Belarusi [Seasonal features of climate changes in Belarus]. Prirodopol’zovaniye = Nature Management, 2014, no. 25, pp. 16–22. (in Russian)

13. Loginov V. F., Lysenko S. A. Sovremennye izmeneniya regional’nogo i global’nogo klimata [Modern changes in regional and global climate]. Minsk, 2019, 314 p. (in Russian)

14. Loginov V. F., Lysenko S. A., Mel’nik V. I. Izmenenie klimata Belarusi: prichiny, posledstviya, vozmozhnosti regulirovaniya [Climate change in Belarus: causes, consequences, and regulatory opportunities]. Minsk, 218 p. (in Russian)

15. Gosudarstvennoye uchrezhdenie "Resbublikanskiy centr po gidrometeorologii, kontrolyu radioaktivnogo zagryazneniya i monitoringu okrizhayushchey sredy" (Belgidromet) [State institution "Republican center for hydrometeorology, control of radioactive contamination and environmental monitoring"]. Available at: https://www.belgidromet.by/ (accessed 18 January 2022)

16. QGIS Project. Available at: https://www.qgis.org/ru/site/ (accessed 20 January 2022)

17. Khitrykau M.A. Ocenka izmeneniy i prognoz bioklimaticheskogo potenciala Belarusi. Avtoref. dis. kand. geogr. nauk [Estimation of changes and forecast of bioclimatic potential of Belarus. Cand. of geogr. sci. abstract]. Minsk, 2021. 24 p. (in Russian)

18. Nacyjanal’ny atlas Belarusi [National atlas of Belarus]. Minsk, Belkartahrafija Publ., 2002, 292 p. (in Belarusian)


Review

For citations:


Loginov V.F., Khitrykau M.A. Quantile analysis of average monthly temperature and precipitation on the territory of Belarus. Nature Management. 2023;(1):5-16. (In Russ.)

Views: 35

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-3928 (Print)