Frequency structure of multiyear variability of the Atlantic Multidecadal and the North Atlantic Oscillations
Abstract
The article considers the specific temporal features of long-period changes in Atlantic Multidecadal Oscillation (AMO) and North Atlantic Oscillation (NAO) as well the frequency of the occurrence of the western form of the atmospheric circulation according to G. Ya. Vangengeim – A. A. Geers. Special attention was paid to the analyzing of quasi-sixty-year, quasi-nine-year and quasi-eight-year oscillations in the change of AMO and NAO. The climatic system is considered as an oscillatory system, where in case of the coincidence or proximity of the natural frequencies of oscillations with the frequencies of energetically weak external impacts repeated in time, the resonances and beating of different time scales can occur. This hypothesis was confirmed in the article: the superposition of the natural oscillations of AMO and oscillations related to planetary influences on the climate system was established. The world ocean is considered as the main link of the climate system auto oscillations.
About the Authors
V. F. LoginovBelarus
Vladimir F. Loginov, Academician, D. Sc. (Geography), Professor, Chief Researcher
220076; 10, F. Skoriny Str.; Minsk
V. S. Mikutskiy
Belarus
Vladimir S. Mikutskiy, Ph. D. (Physical and Mathematical), Leading Researcher
220076; 10, F. Skoriny Str.; Minsk
Yu. A. Brovka
Belarus
Yuliya A. Brovka, Ph. D. (Geography), Assistant professor, Senior Researcher
220076; 10, F. Skoriny Str.; Minsk
References
1. Global'noe izmenenie prirodnoj sredy (klimat i vodnyj rezhim) [Global change of natural environment (climate and water regimes)]. Ed. by Kasimova N. S., Klige R. K. Moscow, Nauchny Mir Publ., 2000, 304 p. (in Russian)
2. Loginov V. F. Diagnoz global'nogo klimata [Diagnosis of global climate]. St. Petersburg, Lema Publ., 2021, 304 p. (in Russian)
3. Loginov V. F. Kosmicheskie faktory klimaticheskih izmenenij [Space factors of climate change]. Nac. akad. nauk Belarusi, In-t prirodopolzovaniya [National Academy of Sciences of Belarus, Institute of Nature Management]. Minsk, 2020, 168 p. (in Russian)
4. Loginov V. F., Mikutsky V. S., Brovka Yu. A. Mnogoletnie izmeneniya chastotnoj struktury Atlanticheskoj mul'tidekadnoj oscillyacii i Severo-Atlanticheskoj oscillyacii i ih vozmozhnye prichiny [Multiyear variations in the frequency structure of the Atlantic Multidecadal Oscillation and the North Atlantic Oscillation and their possible causes]. Gidrometeorologiya i obrazovanie = Hydrometeorology and education, 2024, no. 1, pp. 5–22 (in Russian)
5. Loginov V. F., Lysenko S. A. Sovremennye izmeneniya global'nogo i regional'nogo klimata [Current global and regional climate changes]. Minsk, Belaruskaya Navuka Publ., 2019, 315 p. (in Russian)
6. Monin A. S., Sonechkin D. М. Kolebaniya klimata po dannym nablyudenij: trojnoj solnechnyj i drugie cikly [Observational climate variations: triple solar and other cycles]. Moscow, Nauka Publ., 2005, 191 p. (in Russian)
7. Nesterov E. S. Severoatlanticheskoe kolebanie: atmosfera i okean [North Atlantic Oscillation: atmosphere and ocean]. Moscow, Triada Ltd Publ., 2013, 144 p. (in Russian)
8. Datsenko N. M., Monin A. S., Berestov A. A., Ivanchenko N. N., Sonechkin D. М. O kolebaniyah global'nogo klimata za poslednie 150 let [On global climate fluctuations over the past 150 years]. Doklady Rossijskoj Akademii nauk = Reports of the Russian Academy of Sciences, 2004, vol. 399, no. 2, pp. 253–256 (in Russian)
9. Polonsky A. B. Rol' okeana v izmeneniyah klimata [The role of the ocean in climate change]. Kiev, Naukova Dumka Publ., 2008, 183 p. (in Russian)
10. Polonsky A. B., Sukhonos P. A. Severoatlanticheskoe kolebanie i byudzhet tepla verhnego sloya Severnoj Atlantiki [North Atlantic Oscillation and heat budget of the upper layer of the North Atlantic]. Fundamental'naya i prikladnaya klimatologiya = Fundamental and Applied Climatology, 2019, no. 4, pp. 67–100 (in Russian)
11. Sherstyukov B. G. Kolebatel'naya sistema klimata, rezonansy, dal'nie svyazi, prognozy [Climate oscillation system, resonances, long-range communications, forecasts]. Obninsk, All-Russian Research Institute of Hydrometeorological Information – World Data Center Publ., 2021, 221 p. (in Russian)
12. Shuleykin V. V. Fizika morya [Physics of the sea]. Moscow, Nauka Publ., 1968, 1083 p. (in Russian)
13. Yakovleva N. I. K voprosu o prichinah kvaziperiodicheskih kolebanij klimata [To the question of the causes of quasiperiodic climate fluctuations]. Trudy GGO = Proceedings of the Main Geophysical Observatory, 1969, iss. 236, pp. 35–44 (in Russian)
14. Hurrell J. W. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 1995, vol. 269, pp. 676–679.
15. Sarafanov A. On the effect of the North Atlantic Oscillation on temperature and salinity of the subpolar North Atlantic intermediate and deep waters. ICES J., Marine Sci., 2009, vol. 66, no. 7, pp. 1448–1454.
16. Scafetta N. A shared frequency set between the historical mid-latitude aurora records and the global surface temperature. J. Atmos. Sol. Ter. Phys., 2012, vol. 74, pp. 145–163.
17. Veretenenko S., Ogurtsov M. Manifestation and possible reasons of ~ 60-year climatic cycle in correlation links between solar activity and lower atmosphere circulation. Problems of geocosmos-2018. Springer proceeding in Earth an environmental sciences. doi: 10.1007/978-3-030-21788-4_30
18. Frolov I. E., Gudkovich Z. M., Karklin V. P., Smolyanitsky V. M. Izmeneniya klimata Arktiki i Antarktiki: rezul'tat dejstviya estestvennyh prichin [Arctic and Antarctic climate change: the result of natural causes]. Problemy Arktiki i Antarktiki = Arctic and Antarctic issues, 2010, no. 2 (85), pp. 52–61 (in Russian)
19. Lysenko S. A., Loginov V. F. Prostranstvenno-vremennaya kogerentnost' kvaziperiodicheskih komponent meteorologicheskih polej, kak osnova dolgosrochnyh prognozov pogody [Spatial and temporal coherence of quasi-periodic components of meteorological fields as a basis for long-term weather forecasts]. Doklady Nacional'noj akademii nauk Belarusi = Reports of the National Academy of Sciences of Belarus, 2023, vol. 67, no. 6, pp. 499–507 (in Russian)
20. Jackson L. C., Peterson A. K., Roberts C. D., Wood R. A. Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening. Nature Geosci., 2016, vol. 9, no. 7, pp. 518–522.
21. Seip K. L., Grøn О., Wang H. The North Atlantic Oscillations: Cycle Times for the NAO, the AMO and the AMOC. Climate, 2019, vol. 7, no. 3, art. 43. doi: 10.3390/cli7030043
22. Arthun M., Eldevik T., Viste E., Drange H., Furevik T., Johnson H. L., Keenlyside N. S. Skillful prediction of northern climate provided by the ocean. Nature Communications, 2017, vol. 8, art. 15875. doi: 10.1038/ncomms15875
23. McCarthy G. D., Joyce T. M., Josey S. A. Gulf stream variability in the context of quasi-decadal and multidecadal Atlantic climate variability. Geophys. Res. Lett., 2018, vol. 45, no. 20, pp. 11257–11264.
24. Maximov I. V., Sarukhanyan E. I., Smirnov N. P. Okean i kosmos [Ocean and space]. Leningrad, Gidrometeeoizdat Publ., 1970, 216 p. (in Russian)
25. Fedorov V. M. Insolyaciya Zemli i sovremennye izmeneniya klimata [Insolation of the Earth and modern climate change]. Moscow, Physmatlit Publ., 2018, 232 p. (in Russian)
26. Voinov G. N. Prilivnye yavleniya i metodologiya ih issledovanij v shel'fovoj zone arkticheskih morej (na primere Karskogo i severo-vostochnoj chasti Barenceva morej). Diss. dokt. geogr. nauk [Tidal phenomena and methodology of their research in the shelf zone of the Arctic seas (by the example of the Kara and north-eastern part of the Barents Seas). Dr. geogr. sci. diss.]. St. Petersburg, 2003. 350 p. (in Russian)
27. Vorobyev В. N., Sarukhanyan E. I., Smirnov N. P. Lunnyj nodal'nyj (deklinacionnyj) priliv i ego vozmozhnoe vliyanie na cirkulyaciyu atmosfery [Lunar nodal (declinational) tide and its possible influence on atmospheric circulation]. Uchenye zapiski RGGMU = Scientific Notes of the Russian State Hydrometeorological University, 2006, no. 2, pp. 7–19 (in Russian)
28. Kaplan A., Cane M., Kushnir Y., Clement A., Blumenthal M., Rajagopalan B. Analyses of global sea surface temperature 1856–1991. J. of Geophysical Research, 1998, vol. 103, no. C9, pp. 18567–18589.
29. Golyandina N. E. Metod "Gusenica"-SSA: analiz vremennyh ryadov : ucheb. posobie [Method "Caterpillar"-SSA: analysing time series]. St. Petersburg, St. Petersburg State University Publ., 2004, 76 p. (in Russian)
30. Atlas vremennyh variacij prirodnyh, antropogennyh i social'nyh processov [Atlas of temporal variations of natural, anthropogenic and social processes]. Gamburtsev A. G. [et al.] (compilers). T. 3. Prirodnye i social'nye sfery kak chasti okruzhayushchej sredy i kak ob"ekty vozdejstvij [Vol. 3. Natural and social spheres as parts of the environment and as objects of impacts]. Moscow, Janus-K Publ., 2002, 652 p. (in Russian)
31. Solodovnikov V. V., Matveev P. S., Waldenberg Yu. S., Baburin V. M. Vychislitel'naya tekhnika v primenenii k staticheskim issledovaniyam v avtomatike [Computing technique in application to static studies in automatics]. Moscow, Mashgiz Publ., 1963. 167 p. (in Russian)
32. Girs A. A. Makrocirkulyacionnyj metod dolgosrochnyh meteorologicheskih prognozov [Macrocirculation method of long-term meteorological forecasts]. Leningrad, Gidrometeeoizdat Publ., 1974, 488 p. (in Russian)
33. Gastineau G., Frankignoul C. Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth century. J. Climate, 2015, vol. 28, no. 4, pp. 1396–1416. doi: 10.1175/JCLI-D-14-00424.1
34. Iwashima T. Time-spaced spectral general circulation model, I-time-space spectral model of low-order barotropic system with periodic forcing. J. Met. Soc. Japan, 1986, vol. 64, pp. 183–196.
35. Sazonov B. I., Loginov V. F. Solnechno-troposfernye svyazi [Solar-tropospheric connections]. Leningrad, Gidrometeeoizdat Publ., 1969, 116 p. (in Russian)
36. Molchanov A. M. Gipoteza rezonansnoj struktury solnechnoj sistemy [Hypothesis of the resonance structure of the solar system]. Prostranstvo i vremya = Space and Time, 2013, no. 1(1), pp. 34–48 (in Russian)
37. Blekhman I. I. Sinhronizaciya dinamicheskih system [Synchronisation of dynamic systems]. Moscow, Nauka, Main Editorial Office of Physical and Mathematical Literature Publ., 1997, 894 p. (in Russian)
38. Byalko A. V. Relaksacionnaya teoriya klimata [Relaxation theory of climate]. Uspekhi fizicheskih nauk = Advances in the Physical Sciences, 2012, vol. 182, no. 1, pp. 111–116 (in Russian)
39. Anishchenko V. S., Neiman A. B., Moss F., Szymanskii-Gayer L. Stohasticheskij rezonans kak inducirovannyj shumom effekt uvelicheniya stepeni poryadka [Stochastic resonance as a noise-induced effect of increasing degree of order]. Uspekhi fizicheskih nauk = Advances in Physical Sciences, 1999, vol. 169, no. 1, pp. 7–38 (in Russian)
40. Byshev V. I., Neiman V. G., Anisimov M. V., Gusev A. V., Romanov Yu. A., Serykh I. V., Sidorova A. N., Figurkin A. L., Anisimov I. M. Trudy Gosudarstvennogo okeanograficheskogo instituta "Mezhdekadnye oscillyacii teplosoderzhaniya verhnego deyatel'nogo sloya okeana v kontekste korotkoperiodnoj izmenchivosti sovremennogo klimata" [Proc. of the St. Oceanographic Inst. "Interdecadal oscillations of upper-ocean heat content in the context of short-period variability of modern climate"]. 2016, iss. 217, pp. 323–343 (in Russian)
41. Fedorov A. M., Bashmachnikov I. L., Belonenko T. V. Lokalizaciya oblastej glubokoj konvekcii v moryah Severo-Evropejskogo bassejna, Labrador i Irmingera [Localization of areas of deep convection in the seas of the North European Basin, Labrador and Irminger]. Vestnik of Saint-Petersburg University. Earth Sciences, 2018, vol. 63, iss. 3, pp. 345–362 (in Russian)
Review
For citations:
Loginov V.F., Mikutskiy V.S., Brovka Yu.A. Frequency structure of multiyear variability of the Atlantic Multidecadal and the North Atlantic Oscillations. Nature Management. 2024;(1):5-17. (In Russ.)
JATS XML